Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles.
نویسندگان
چکیده
We construct the hydrodynamic equations for suspensions of self-propelled particles (SPPs) with spontaneous orientational order, and make a number of striking, testable predictions: (i) Nematic SPP suspensions are always absolutely unstable at long wavelengths. (ii) SPP suspensions support novel propagating modes at long wavelengths, coupling orientation, flow, and concentration. (iii) In a wave number regime accessible only in low Reynolds number systems such as bacteria, polar-ordered suspensions are invariably convectively unstable. (iv) The variance in the number N of particles, divided by the mean , diverges as (2/3 ) in polar-ordered SPP suspensions.
منابع مشابه
Instabilities, pattern formation, and mixing in active suspensions
Suspensions of self-propelled particles, such as swimming micro-organisms, are known to undergo complex dynamics as a result of hydrodynamic interactions. To elucidate these dynamics, a kinetic theory is developed and applied to study the linear stability and the nonlinear pattern formation in these systems. The evolution of a suspension of self-propelled particles is modeled using a conservati...
متن کاملStatistical hydrodynamics of ordered suspensions of self-propelled particles: waves, giant number &uctuations and instabilities
General principles of symmetry and conservation are used to construct the hydrodynamic equations for orientationally ordered suspensions of self-propelled particles (SPPs). Without knowledge of the microscopic origins of the ordering or the mechanisms of self-propulsion, we are able to make a number of striking, testable predictions for the properties of these nonequilibrium phases of matter. T...
متن کاملShear flow induced isotropic to nematic transition in a suspension of active filaments
– We study the effects of externally applied shear flow on a model of suspensions of motors and filaments, via the equations of active hydrodynamics [PRL 89 (2002) 058101; 92 (2004) 118101]. In the absence of shear, the orientationally ordered phase of both polar and apolar active particles is always unstable at zero-wavenumber. An imposed steady shear large enough to overcome the active stress...
متن کاملInstabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations.
We use kinetic theory and nonlinear continuum simulations to study the collective dynamics in suspensions of self-propelled particles. The stability of aligned suspensions is first analyzed, and we demonstrate that such suspensions are always unstable to fluctuations, a result that generalizes previous predictions by Simha and Ramaswamy. Isotropic suspensions are also considered, and it is show...
متن کاملOrientational order and instabilities in suspensions of self-locomoting rods.
The orientational order and dynamics in suspensions of self-locomoting slender rods are investigated numerically. In agreement with previous theoretical predictions, nematic suspensions of swimming particles are found to be unstable at long wavelengths as a result of hydrodynamic fluctuations. Nevertheless, a local nematic ordering is shown to persist over short length scales and to have a sign...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 89 5 شماره
صفحات -
تاریخ انتشار 2002